Chapter 2

The Periodic Table and Some Properties of the Elements

Chapter 2: The Components of Matter

2.1 Elements, Compounds, and Mixtures:

An Atomic Overview
2.2 The Observations That Led to an Atomic View of Matter
2.3 Dalton's Atomic Theory
2.4 The Observations That Led to the Nuclear Atom Model
2.5 The Atomic Theory Today

Chapter 2: The Components of Matter

2.6 Elements: A First Look at the Periodic Table

2.7 Compounds: Introduction to Bonding

2.8 Formulas, Names, and Masses of Compounds

2.9 Classification of Mixtures

Definitions for Components of Matter

Element - the simplest type of substance with unique physical and chemical properties. An element consists of only one type of atom. It cannot be broken down into any simpler substances by physical or chemical means. $\mathrm{Cu}, \mathrm{Ag}, \mathrm{N}_{2}, \mathrm{O}_{2}$,

Molecule - a structure that consists of two or

Figure 2.1 more atoms that are chemically bound together and thus behaves as an independent unit.

Definitions for Components of Matter

Compound - a substance

 composed of two or more elements which are chemically combined.

Figure 2.1

D Mixture of two elements and a compound

Mixture - a group of two or more elements and/or compounds that are physically intermingled.

$\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$

Mixtures

A heterogeneous mixture has one or more visible boundaries between the components.

A homogeneous mixture has no visible boundaries because the components are mixed as individual atoms, ions, and molecules.

A homogeneous mixture is also called a solution. Solutions in water are called aqueous solutions.

Figure 2.17 The distinction between mixtures and compounds.

A physical mixture of Fe and S_{8} can be separated using a magnet.

Fe and S have reacted chemically to form the compound FeS. The elements cannot be separated by physical means.

Table 2.1 Some Properties of Sodium, Chlorine, and Sodium Chloride

Property	Sodium +	Chlorine	\longrightarrow	Sodium Chloride
Melting point	$97.8^{\circ} \mathrm{C}$	$-101^{\circ} \mathrm{C}$	$801^{\circ} \mathrm{C}$	
Boiling point	$881.4^{\circ} \mathrm{C}$	$-34^{\circ} \mathrm{C}$	$1413^{\circ} \mathrm{C}$	
Color	Silvery	Yellow-green	Colorless (white)	
Density	$0.97 \mathrm{~g} / \mathrm{cm}^{3}$	$0.0032 \mathrm{~g} / \mathrm{cm}^{3}$	$2.16 \mathrm{~g} / \mathrm{cm}^{3}$	
Behavior in water	Reacts	Dissolves slightly	Dissolves freely	

Sample Problem 2.1 Distinguishing Elements, Compounds, and Mixtures at the Atomic Scale

PROBLEM: The following scenes represent an atomic-scale view of three samples of matter. Describe each sample as an element, compound, or mixture.

PLAN: A sample that contains only one type of particle is either an element or a compound. The particles of an element consist of only one type of atom whereas the particles of a compound have two or more types of atom bonded together.

Sample Problem 2.1

SOLUTION:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Sample (a) contains three different types of particles and is therefore a mixture.

Sample (b) contains only one type of particle and each particle has only one atom. This is an element.

Sample (c) contains only one type of particle, each of which contains two different types of atoms. This is a compound.

Law of Mass Conservation

The total mass of substances present does not change during a chemical reaction.

calcium oxide + carbon dioxide \longrightarrow calcium carbonate

$56.08 \mathrm{~g}+44.00 \mathrm{~g} \longrightarrow 100.08 \mathrm{~g}$

Law of Definite (or Constant) Composition

No matter the source, a particular compound is composed of the same elements in the same parts (fractions) by mass.

Figure 2.2

Calcium carbonate

Analysis by Mass
$($ grams $/ 20.0 \mathrm{~g})$
(grams/20.0 g)
8.0 g calcium
2.4 g carbon
9.6 g oxygen
20.0 g

Mass Fraction
(parts/1.00 part)
0.40 calcium
0.12 carbon
0.48 oxygen
1.00 part by mass

Percent by Mass (parts/100 parts)
40% calcium
12\% carbon 48\% oxygen
100% by mass

Sample Problem 2.2 Calculating the Mass of an Element in a Compound

PROBLEM: Analysis of 84.2 g of the uranium containing compound pitchblende shows it is composed of 71.4 g of uranium, with oxygen as the only other element. How many grams of uranium can be obtained from 102 kg of pitchblende?

PLAN: The mass ratio of uranium/pitchblende is the same no matter the source. We can use the ratio to find the answer.

mass (kg) of pitchblende

mass ratio of U in pitchblende
mass (kg) of uranium
$1 \mathrm{~kg}=1000 \mathrm{~g}$
mass (g) of uranium

Sample Problem 2.2

SOLUTION:

mass (kg) of uranium $=$
mass (kg) pitchblende $\times \underset{\text { mass }(\mathrm{kg}) \text { uranium in pitchblende }}{ }$ mass (kg) pitchblende
$=102 \mathrm{~kg}$ pitchblende $\times \frac{71.4 \mathrm{~kg} \text { uranium }}{84.2 \mathrm{~kg} \text { pitchblende }}=86.5 \mathrm{~kg}$ uranium
86.5 kg uranium $\times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=8.65 \times 10^{4} \mathrm{~g}$ uranium

Law of Multiple Proportions

If elements A and B react to form two compounds, the different masses of B that combine with a fixed mass of A can be expressed as a ratio of small whole numbers.

Example: Carbon Oxides A \& B

Carbon Oxide I : 57.1\% oxygen and 42.9\% carbon Carbon Oxide II : 72.7\% oxygen and 27.3\% carbon

Carbon oxide II (carbon dioxide)

Assume that you have 100 g of each compound.

In 100 g of each compound:
$\mathrm{g} \mathrm{O}=57.1 \mathrm{~g}$ for oxide I \& 72.7 g for oxide II $\mathrm{g} \mathrm{C}=42.9 \mathrm{~g}$ for oxide $\mathrm{I} \& 27.3 \mathrm{~g}$ for oxide II

For oxide I: $\quad \frac{\mathrm{g} \mathrm{O}}{\mathrm{g} \mathrm{C}}=\frac{57.1}{42.9}=1.33$

For oxide II: $\quad \frac{\mathrm{g} \mathrm{O}}{\mathrm{g} \mathrm{C}}=\frac{72.7}{27.3}=2.66$

$$
\frac{2.66 \mathrm{~g} \mathrm{O} / \mathrm{g} \mathrm{C} \mathrm{in} \mathrm{II}}{1.33 \mathrm{~g} \mathrm{O} / \mathrm{g} \mathrm{C} \mathrm{in} \mathrm{I}}=\frac{2}{1}
$$

Dalton's Atomic Theory

Dalton postulated that:

1. All matter consists of atoms; tiny indivisible particles of an element that cannot be created or destroyed.
2. Atoms of one element cannot be converted into atoms of another element.
3. Atoms of an element are identical in mass and other properties and are different from the atoms of any other element.
4. Compounds result from the chemical combination of a specific ratio of atoms of different elements.

Dalton's Atomic Theory

explains the mass laws

Mass conservation

Atoms cannot be created or destroyed postulate 1
or converted into other types of atoms. postulate 2
Since every atom has a fixed mass, postulate 3
during a chemical reaction the same atoms are present but in different combinations; therefore there is no mass change overall.

Dalton's Atomic Theory

explains the mass laws

Definite composition

Atoms are combined in compounds in postulate 4 specific ratios
and each atom has a specific mass. postulate 3

Each element constitutes a fixed fraction of the total mass in a compound.

Dalton's Atomic Theory

explains the mass laws

Multiple proportions

Atoms of an element have the same mass postulate 3 and atoms are indivisible. postulate 1

When different numbers of atoms of elements combine, they must do so in ratios of small, whole numbers.

Carbon oxide II (carbon dioxide)

Sample Problem $2.3 \quad$ Visualizing the Mass Laws
PROBLEM: The following scene represents an atomic-scale view of a chemical reaction. Which of the mass laws (mass conservation, definite composition, or multiple proportions) is (are) illustrated?

PLAN: \quad Note the numbers, types and combination of atoms before and after the reaction.

Sample Problem 2.3

SOLUTION:

There are 7 purple and 9 green atoms both before and after the reaction. Mass is therefore conserved.

After the reaction some purple atoms remain unreacted, but some have combined with green atoms to form a compound. Each particle of this compound contains 1 purple and 2 green atoms - the composition is constant, illustrating the law of definite composition.

The ratio of the elements in the compound is a small, whole number. The ratio of their masses will also be a small, whole number. This illustrates the law of multiple proportions.

Figure 2.3
Observations that established the properties of cathode rays.

J. J Thomson, (1897) was able to measure the electron
(Mass/charge) ratio $=-5.686 \times 10^{-12}$
Kg/C
Note: Dalton atoms are not divisible??

Observation	Conclusion
Ray bends in magnetic field. Ray bends toward positive plate in electric field. Ray is identical for any cathode.	Ray consists of charged particles.
Ray consists of negative particles.	

Figure 2.4 Millikan's oil-drop experiment for measuring an electron's charge. (1909)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electron charge $=-1.60218 \times 10^{-19} \mathrm{C} \quad($ coulomb)

Millikan's findings were used to calculate the mass of an electron.

$$
\left.\begin{array}{rl}
\text { mass of electron } & =\frac{\text { mass }}{\text { determined by J.J. Thomson }} \text { and others }
\end{array}\right) \times \text { charge } .
$$

Figure 2.5
Rutherford's α-scattering experiment and discovery of the atomic nucleus. (1910)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A Hypothesis: Expected result based

Rutherford: Atoms are empty space occupied by electrons, but in the center a tiny region he called nucleus contains all the positive particles and called them protons. In 1932 James Chadwick discovered the Neutrons.

Figure 2.6 General features of the atom.
The atom is an electrically neutral, spherical entity composed of a positively charged central nucleus surrounded by one or more negatively charged electrons.

The atomic nucleus consists of protons and neutrons.

Table 2.2 Properties of the Three Key Subatomic Properties

	Charge				
Name (Symbol)	Relative Absolute (C)	Relative $(\mathrm{amu})^{\dagger}$	Absolute (g)	Location in Atom	
Proton $\left(\mathrm{p}^{+}\right)$	$1+$	$+1.60218 \times 10^{-19}$	1.00727	1.67262×10^{-24}	Nucleus
Neutron $\left(\mathrm{n}^{0}\right)$	0	0	1.00866	1.67493×10^{-24}	Nucleus
Electron $\left(\mathrm{e}^{-}\right)$	$1-$	-1.60218×10^{-19}	0.00054858	9.10939×10^{-28}	Outside

*The coulomb (C) is the SI unit of charge.
\dagger The atomic mass unit (amu) equals $1.66054 \times 10^{-24} \mathrm{~g}$.

Atomic Number, Mass Number, and Atomic Symbol

Figure 2.7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Mass number ($\mathrm{p}^{+}+\mathrm{n}^{0}$)

Atomic number (p^{+})
$\mathrm{X}=$ Atomic symbol of the element
$\boldsymbol{A}=$ mass number; $A=Z+N$
$\boldsymbol{Z}=$ atomic number
(the number of protons in the nucleus)

$\boldsymbol{N}=$ number of neutrons in the nucleus

Isotopes

Isotopes are atoms of an element with the same number of protons, but a different number of neutrons.

Isotopes have the same atomic number, but a different mass number.

Figure 2.7

Sample Problem 2.4

Determining the Number of Subatomic Particles in the Isotopes of an Element

PROBLEM: Silicon (Si) has three naturally occurring isotopes:
${ }^{28} \mathrm{Si},{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$. Determine the number of protons, neutrons, and electrons in each silicon isotope.

PLAN: The mass number (A) is given for each isotope and is equal to the number of protons + neutrons. The atomic number Z, found on the periodic table, equals the number of protons. The number of neutrons $=A-Z$, and the number of electrons equals the number of protons for a neutral atom.

SOLUTION: The atomic number of silicon is 14 ; therefore
${ }^{28}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $14 \mathrm{n}^{0}$ (28-14)
${ }^{29}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $15 \mathrm{n}^{0}$ (29-14)
${ }^{30}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $16 \mathrm{n}^{0}(30-14)$

The Mass Spectrometer and Its Data

Mass Spectrometer measures the mass ratio and mass to charge ratio

2-33

Atomic Symbol

C Carbon
 $\mathbf{N a}$ (Natrium) Sodium

Note: The chemical properties of an element are determined by the number of electrons or number of protons. So having Isotopes of an element will not change its chemical properties much.

Mass of an atom

Atomic mass unit (amu) or Dalton (Da)
Today (u) only

$$
\mathrm{amu}=\frac{1}{12} \text { mass of }{ }^{12} \mathrm{C}
$$

So ${ }^{12} \mathrm{C}$ has a mass of $\mathbf{1 2} \mathbf{u}$

Sample Problem 2.5 Calculating the Atomic Mass of an Element

PROBLEM: Silver ($\mathrm{Ag}, \mathrm{Z}=47$) has two naturally occurring isotopes, ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$. From the mass spectrometric data provided, calculate the atomic mass of Ag .

Isotope	Mass (amu)	Abundance (\%)
${ }^{107} \mathrm{Ag}$	106.90509	51.84
${ }^{109} \mathrm{Ag}$	108.90476	48.16

PLAN: Find the weighted average of the isotopic masses.

mass (g) of each isotope
multiply by fractional abundance of each isotope
portion of atomic mass from each isotope
add isotopic portions
atomic mass

2-35

Sample Problem 2.5

SOLUTION:

mass portion from ${ }^{107} \mathrm{Ag}=$
$106.90509 \mathrm{amu} \times 0.5184=55.42 \mathrm{amu}$
mass portion from ${ }^{109} \mathrm{Ag}=$ $108.90476 \mathrm{amu} \times 0.4816=52.45 \mathrm{amu}$
atomic mass of $\mathrm{Ag}=55.42 \mathrm{amu}+52.45 \mathrm{amu}$

$$
=107.87 \mathrm{amu}
$$

ELEMENTS: A FIRST LOOK AT THE PERIODIC TABLE.

187065 elements were known
Today more than 116 elements
Dmitri Mendeleev and Meyer discovered the periodic table separately in 1869
Dmitri Mendeleev organized elements, he listed the elements by increasing atomic mass.

Figure $2.9 \quad$ The modern periodic table.

Figure 2.11 Factors that influence the strength of ionic bonding.

Sample Problem 2.6

PROBLEM: Predict the monoatomic ion formed by each of the following elements:
(a) lodine ($Z=53$)
(b) Calcium ($Z=20$)
(c) Aluminum ($Z=13$)

PLAN: Use Z to find the element on the periodic table and see where it lies relative to its nearest noble gas.

SOLUTION:

(a) lodine is a nonmetal in Group 7A(17). It gains one electron to have the same number of electrons $\mathrm{as}_{54} \mathrm{Xe}$.

The ion is I^{-}
(b) Calcium is a metal in Group 2A(2). It loses two electrons to have the same number of electrons as ${ }_{18} \mathrm{Ar}$.

The ion is Ca^{2+}
(c) Aluminum is a metal in Group 3A(13). It loses three electrons to have the same number of electrons as ${ }_{10} \mathrm{Ne}$. The ion is Al^{3+}

Figure 2.12 Formation of a covalent bond between two H atoms.
Covalent bonds form when elements share electrons, which usually occurs between nonmetals.

Atoms far apart: No interactions.

Atoms closer: Attractions (green arrows) between nucleus of one atom and electron of the other increase. Repulsions between nuclei and between electrons are very weak.

Molecules and Ions

Molecule - the basic unit of an element or covalent compound, consisting of two or more atoms bonded by the sharing of electrons.

Most covalent substances consist of molecules.

Ion - a single atom or covalently bonded group of atoms that has an overall electrical charge.

There are no molecules in an ionic compound.

Figure 2.13 Elements that occur as molecules.

Figure 2.14 The carbonate ion in calcium carbonate.

A polyatomic ion consists of two or more atoms covalently bonded together and has an overall charge.
In many reactions the polyatomic ion will remain together as a unit.

Chemical Formulas

- A chemical formula consists of
- element symbols with
- numerical subscripts.
- The chemical formula indicates the
- type and number of each atom present
- in the smallest unit of a substance.

Naming Binary Ionic Compounds

For all ionic compounds, the name and formula lists the cation first and the anion second.

In a binary ionic compound, both the cation and the anion are monatomic.

The name of the cation is the same as the name of the metal. Many metal names end in -ium.

The anion is named by adding the suffix -ide to the root of the nonmetal name.

Calcium and bromine form calcium bromide.

Table 2.3 Common Monatomic Ions*

Charge	Cations Formula	Name	Charge	Anions Formula	Name
+1	H^{+} Li^{+} Na^{+} \mathbf{K}^{+} Cs^{+} $\mathbf{A g}^{+}$	hydrogen lithium sodium potassium cesium silver	-1	$\begin{array}{\|l\|} \hline \mathrm{H}^{-} \\ \mathrm{F}^{-} \\ \mathrm{Cl}^{-} \\ \mathrm{Br}^{-} \\ \mathrm{I}^{-} \end{array}$	hydride fluoride chloride bromide iodide
+2	$\mathbf{M g}^{\mathbf{2}+}$ Ca^{2+} Sr^{2+} Ba^{2+} $\mathbf{Z n}^{\mathbf{2}+}$ Cd^{2+}	magnesium calcium strontium barium zinc cadmium	-2	$\begin{aligned} & \mathbf{O}^{2-} \\ & \mathbf{S}^{2-} \end{aligned}$	oxide sulfide
+3	Al^{3+}	aluminum	-3	N^{3-}	nitride

*Listed by charge; those in boldface are most common.

Figure 2.15 Some common monatomic ions of the elements.

Most main-group elements form one monatomic ion.
Most transition elements form two monatomic ions.
2-49

Sample Problem 2.7 Naming Binary Ionic Compounds

PROBLEM: Name the ionic compound formed from each of the following pairs of elements:
(a) magnesium and nitrogen
(b) iodine and cadmium
(c) strontium and fluorine
(d) sulfur and cesium

PLAN: Use the periodic table to decide which element is the metal and which the nonmetal. The metal (cation) is named first and the suffix-ide is added to the root of the non-metal name.

SOLUTION:

(a) magnesium nitride
(b) cadmium iodide
(c) strontium fluoride
(d) cesium sulfide

Sample Problem 2.8

Determining Formulas of Binary Ionic Compounds

PROBLEM: Write empirical formulas for each of the compounds named in Sample Problem 2.7.
(a) magnesium nitride
(b) cadmium iodide
(c) strontium fluoride
(d) cesium sulfide

PLAN: A compound is neutral. We find the smallest number of each ion that will produce a neutral formula. These numbers appear as right subscripts to the relevant element symbol.

SOLUTION:

(a) Mg^{2+} and N^{3-}; three $\mathrm{Mg}^{2+}(6+)$ and two $\mathrm{N}^{3-}\left(6^{-}\right) ; \mathrm{Mg}_{3} \mathbf{N}_{2}$
(b) Cd^{2+} and I^{-}; one $\mathrm{Cd}^{2+}(2+)$ and two $\mathrm{I}^{-}\left(2^{-}\right) ; \mathrm{Cdl}_{2}$
(c) Sr^{2+} and F^{-}; one $\mathrm{Sr}^{2+}(2+)$ and two $\mathrm{F}^{-}\left(2^{-}\right) ; \mathrm{SrF}_{2}$
(d) Cs^{+}and S^{2-}; two $\mathrm{Cs}^{+}(2+)$ and one $\mathrm{S}^{2-}\left(2^{-}\right) ; \mathrm{Cs}_{\mathbf{2}} \mathbf{S}$

Table 2.4 Some Metals That Form More Than One Monatomic Ion*

Element	Ion Formula	Systematic Name	Common Name
Chromium	Cr^{2+}	chromium(II)	chromous
	Cr^{3+}	chromium(III)	chromic
Cobalt	Co^{2+}	cobalt(II)	
	Co^{3+}	cobalt(III)	
Copper	Cu^{+}	copper(I)	cuprous
	Cu^{2+}	copper(II)	cupric
Iron	Fe^{2+}	iron(II)	ferrous
	Fe^{3+}	iron(III)	ferric
Lead	Pb^{2+}	lead(II)	
	Pb^{4+}	lead(IV)	
Mercury	$\mathrm{Hg}_{2}{ }^{2+}$	mercury (I)	mercurous
	Hg^{2+}	mercury (II)	mercuric
Tin	Sn^{2+}	tin(II)	stannous
	Sn^{4+}	tin(IV)	stannic

Sample Problem 2.9 Determining Names and Formulas of Ionic Compounds of Elements That Form More Than One Ion

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:
(a) tin(II) fluoride
(b) Crl_{3}
(c) ferric oxide
(d) CoS

PLAN: Find the smallest number of each ion that will produce a neutral formula.

SOLUTION:

(a) $\mathrm{Tin}(\mathrm{II})$ is Sn^{2+}; fluoride is F^{-}; so the formula is SnF_{2}.
(b) The anion I^{-}is iodide; $3 \mathrm{I}^{-}$means that Cr (chromium) is $+3 . \mathrm{Crl}_{3}$ is chromium(III) iodide.
(c) Ferric is a common name for Fe^{3+}; oxide is O^{2-}; therefore the formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
(d) Co is cobalt; the anion S^{2-} is sulfide; the compound is cobalt(II) sulfide.

Table 2.5 Common Polyatomic lons*

Formula	Name	Formula	Name
Cations			
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium
Common Anions			
$\mathrm{CH}_{3} \mathrm{COO}^{-}$	acetate	$\mathrm{CO}_{3}{ }^{2-}$	carbonate
CN^{-}	cyanide	$\mathrm{HCO}_{3}{ }^{-}$	bicarbonate
OH^{-}	hydroxide	$\mathrm{CrO}_{4}{ }^{\text {- }}$	chromate
ClO^{-}	hypochlorite	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate
$\mathrm{ClO}_{2}{ }^{-}$	chlorite	$\mathrm{O}_{2}{ }^{2-}$	peroxide
$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{PO}_{4}{ }^{3-}$	phosphate
$\mathrm{NO}_{2}{ }^{-}$	nitrite	$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate
$\mathrm{NO}_{3}{ }^{-}$	nitrate	$\mathrm{SO}_{3}{ }^{2-}$	sulfite
$\mathrm{MnO}_{4}{ }^{\text {- }}$	permanganate	$\mathrm{SO}_{4}{ }^{\text {- }}$	sulfate

Figure 2.16 Naming oxoanions

$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{0} \end{aligned}$	Prefix	Root	Suffix	Example	
	per	root	ate	$\mathrm{ClO}_{4}{ }^{-}$	perchlorate
		root	ate	$\mathrm{ClO}_{3}{ }^{-}$	chlorate
		root	ite	$\mathrm{ClO}_{2}{ }^{-}$	chlorite
	hypo	root	ite	ClO^{-}	hypochlorite

Table 2.6 Numerical Prefixes* for Hydrates and Binary Covalent Compounds

Number	Prefix	Number	Prefix	Number	Prefix
1	mono-	4	tetra-	8	octa-
2	di-	5	penta-	9	nona-
3	tri-	6	hexa-	10	deca-
		7	hepta-		

Sample Problem 2.10 Determining Names and Formulas of Ionic Compounds Containing Polyatomic Ions

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:
(a) $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$
(b) sodium sulfite
(c) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

PLAN: Remember to use parentheses when more than one unit of a particular polyatomic ion is present in the compound.

SOLUTION: (a) $\mathrm{ClO}_{4}{ }^{-}$is perchlorate; Fe must have a $2+$ charge since there are $2 \mathrm{ClO}_{4}^{-}$ions. This is iron(II) perchlorate.
(b) The anion sulfite is $\mathrm{SO}_{3}{ }^{2-}$; therefore you need $2 \mathrm{Na}^{+}$for each sulfite. The formula is $\mathrm{Na}_{2} \mathbf{S O}_{3}$.
(c) The ionic compound is barium hydroxide. When water is included in the formula, we use the term "hydrate" and a prefix that indicates the number of molecules of $\mathrm{H}_{2} \mathrm{O}$. This compound is barium hydroxide octahydrate.

Sample Problem 2.11

Recognizing Incorrect Names and

 Formulas of Ionic CompoundsPROBLEM: There is an error in the second part of each statement. Provide the correct name or formula in each case.
(a) $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ is called barium diacetate.
(b) Sodium sulfide has the formula $(\mathrm{Na})_{2} \mathrm{SO}_{3}$.
(c) Iron(II) sulfate has the formula $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
(d) Cesium carbonate has the formula $\mathrm{Cs}_{2}\left(\mathrm{CO}_{3}\right)$.

SOLUTION:

(a) The charge of Ba^{2+} must be balanced by two $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ions. The prefix "di" is not required and is not used in this way when naming ionic compounds. The correct name is simply barium acetate.
(b) An ion of a single element does not need parentheses, and sulfide is S^{2-}, not $\mathrm{SO}_{3}{ }^{2-}$. The correct formula is $\mathrm{Na}_{2} \mathbf{S}$.

Sample Problem 2.11

(c) Sulfate or $\mathrm{SO}_{4}{ }^{2-}$ has a 2^{-}charge, and only one Fe^{2+} is needed to form a neutral compound. The formula should be FeSO_{4}.
(d) The parentheses are unnecessary, since only one $\mathrm{CO}_{3}{ }^{2-}$ ion is present. The correct formula is $\mathbf{C s}_{2} \mathbf{C O}_{3}$.

Naming Acids

1) Binary acid solutions form when certain gaseous compounds dissolve in water.
For example, when gaseous hydrogen chloride (HCl) dissolves in water, it forms a solution called hydrochloric acid.
Prefix hydro- + anion nonmetal root + suffix -ic + the word acid -
hydro + chlor + ic + acid hydrochloric acid
2) Oxoacid names are similar to those of the oxoanions, except for two suffix changes:
-ate in the anion becomes -ic in the acid
-ite in the anion becomes -ous in the acid
The oxoanion prefixes hypo- and per-are retained. Thus, BrO_{4}^{-}is perbromate, and HBrO_{4} is perbromic acid;
IO_{2}^{-}is iodite, and HIO_{2} is iodous acid.

Sample Problem 2.12 Determining Names and Formulas of

 Anions and AcidsPROBLEM: Name the following anions and give the name and formula of the acid derived from each:
(a) Br^{-}
(b) $\mathrm{IO}_{3}{ }^{-}$
(c) CN^{-}
(d) $\mathrm{SO}_{4}{ }^{2-}$
(e) NO_{2}^{-}

SOLUTION:

(a) The anion is bromide; the acid is hydrobromic acid, HBr .
(b) The anion is iodate; the acid is iodic acid, HIO_{3}.
(c) The anion is cyanide; the acid is hydrocyanic acid, HCN.
(d) The anion is sulfate; the acid is sulfuric acid, $\mathbf{H}_{2} \mathbf{S O}_{4}$.
(e) The anion is nitrite; the acid is nitrous acid, HNO_{2}.

Naming Binary Covalent Compounds

A binary covalent compound is typically formed by the combination of two non-metals.

Some of these compounds are very common and have trivial names, eg., $\mathrm{H}_{2} \mathrm{O}$ is water.

For a binary covalent compound, the element with the lower group number in the periodic table is first in the name and formula. Its name remains unchanged.

The element that is second is named using the root with the suffix -ide. Numerical prefixes indicate the number of atoms of each element present.

Sample Problem 2.13 Determining Names and Formulas of Binary Covalent Compounds

PROBLEM: (a) What is the formula of carbon disulfide?
(b) What is the name of PCl_{5} ?
(c) Give the name and formula of the compound whose molecules each consist of two N atoms and four O atoms.

SOLUTION:

(a) Carbon is C , sulfide is sulfur S and di-means two; the formula is CS_{2}.
(b) P is phosphorous, Cl is chloride, the prefix for 5 is penta-. This is phosphorous pentachloride.
(c) N is nitrogen and is in a lower group number than O (oxygen). The compound formula is $\mathbf{N}_{2} \mathbf{O}_{4}$ and the name is dinitrogen tetraoxide.

Sample Problem 2.14 Recognizing Incorrect Names and

 Formulas of Binary Covalent CompoundsPROBLEM: Explain what is wrong with the name of formula in the second part of each statement and correct it:
(a) SF_{4} is monosulfur pentafluoride.
(b) Dichlorine heptaoxide is $\mathrm{Cl}_{2} \mathrm{O}_{6}$.
(c) $\mathrm{N}_{2} \mathrm{O}_{3}$ is dinitrotrioxide.

SOLUTION:

(a) The prefix mono- is not needed if there is only one atom of the first element, and the prefix for four is tetra-. So the name is sulfur tetrafluoride.
(b) Hepta- means 7; the formula should be $\mathrm{Cl}_{2} \mathrm{O}_{7}$.
(c) The first element is given its elemental name so this is dinitrogen trioxide.

Naming Straight-Chain Alkanes

Hydrocarbons are compounds that contain only carbon and hydrogen atoms.

Alkanes are the simplest type of hydrocarbon.
Alkanes are named using a root name followed by the suffix -ane.

Table 2.7 The First 10 Straight-Chain Alkanes

Molecular Masses from Chemical Formulas

Molecular mass = sum of atomic masses

For the $\mathrm{H}_{2} \mathrm{O}$ molecule:
molecular mass =

$$
\begin{aligned}
& (2 \times \text { atomic mass of } \mathrm{H})+(1 \times \text { atomic mass of } \mathrm{O}) \\
& =(2 \times 1.008 \mathrm{amu})+(1 \times 16.00 \mathrm{amu}) \\
& =18.02 \mathrm{amu}
\end{aligned}
$$

By convention, we read masses off the periodic table to 4 significant figures.

For ionic compounds we refer to a formula mass since ionic compounds do not consist of molecules.

Sample Problem 2.15 Calculating the Molecular Mass of a Compound

PROBLEM: Using the periodic table, calculate the molecular (or formula) mass of:
(a) tetraphosphorous trisulfide
(b) ammonium nitrate

PLAN: Write the formula and then multiply the number of atoms by the respective atomic masses. Add the masses for each compound.

SOLUTION:

(a) $\mathrm{P}_{4} \mathrm{~S}_{3}$
molecular mass $=(4 \times$ atomic mass of $P)+(3 x$ atomic mass of $S)$

$$
=(4 \times 30.97 \mathrm{amu})+(3 \times 32.07 \mathrm{amu})=220.09 \mathrm{amu}
$$

(b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
formula mass $=(2 x$ atomic mass of $N)+(4 x$ atomic mass of $H)+$
($3 \times$ atomic mass of O)
$=(2 \times 14.01 \mathrm{amu})+(4 \times 1.008 \mathrm{amu})+(3 \times 16.00 \mathrm{amu})$
$=80.05 \mathrm{amu}$

Sample Problem 2.16 Using Molecular Depictions to determine

 Formula, Name, and Mass for a compoundPROBLEM: Each scene represents a binary compound. Determine its formula, name, and molecular (formula) mass.

PLAN: Each compound contains only two elements. Find the simplest whole number ratio of atoms in each compound and use this formula to determine the name and the formula mass.

Sample Problem 2.16
SOLUTION:

(a) There is 1 brown Na^{+}for every green F^{-}, so the formula is NaF , an ionic compound, which is named sodium fluoride.

Formula mass $=(1 \mathrm{x}$ atomic mass of Na$)+(1 \mathrm{x}$ atomic mass of F$)$

$$
=22.99 \mathrm{amu}+19.00 \mathrm{amu}=41.99 \mathrm{amu}
$$

(b) There are 3 green F for every blue N, so the formula is $\mathbf{N F}_{3}$, a covalent compound, which is named nitrogen trifluoride.
Molecular mass $=(1 \times$ atomic mass of $N)+(3 x$ atomic mass of $F)$

$$
=14.01 \mathrm{amu}+(3 \times 19.00)=71.01 \mathrm{amu}
$$

Representing Molecules with Formulas and Models

$\mathrm{H}_{2} \mathrm{O} \quad$ Molecular formula for water.
H:O:H
Structural formulas for water.

Ball-and-stick model for water.

Space-filling model for water.

Representing Molecules with Formulas and Models

