Chapter 2

The Periodic Table and Some Properties of the Elements

Chapter 2: The Components of Matter

- 2.1 Elements, Compounds, and Mixtures: An Atomic Overview
- 2.2 The Observations That Led to an Atomic View of Matter
- 2.3 Dalton's Atomic Theory
- 2.4 The Observations That Led to the Nuclear Atom Model
- 2.5 The Atomic Theory Today

>

Chapter 2: The Components of Matter

- 2.6 Elements: A First Look at the Periodic Table
- 2.7 Compounds: Introduction to Bonding
- 2.8 Formulas, Names, and Masses of Compounds
- 2.9 Classification of Mixtures

Definitions for Components of Matter

Element - the simplest type of substance with unique physical and chemical properties. *An element consists of only one type of atom.* It cannot be broken down into any simpler substances by physical or chemical means. Cu, Ag, N₂, O₂.

Molecule - a structure that consists of two or more atoms that are chemically bound together and thus behaves as an independent unit.

 $H_2O, O_3, CO_2, NH_3, O_2$

2-4

B Molecules of an element

Definitions for Components of Matter

Compound - a substance composed of two or more elements which are chemically combined.

D Mixture of two elements and a compound

Figure 2.1

Mixture - a group of two or more elements and/or compounds that are physically intermingled. H_2O + NaCl

A *heterogeneous mixture* has one or more visible boundaries between the components.

A *homogeneous mixture* has no visible boundaries because the components are mixed as individual atoms, ions, and molecules.

A homogeneous mixture is also called a *solution*. Solutions in water are called *aqueous solutions*.

2-5

Figure 2.17 The distinction between mixtures and compounds.

A physical mixture of Fe and S_8 can be separated using a magnet.

Fe and S have reacted chemically to form the compound FeS. The elements cannot be separated by physical means.

Table 2.1 Some Properties of Sodium, Chlorine, and Sodium Chloride

Property	Sodium +	Chlorine	Sodium Chloride
Melting point	97.8°C	-101°C	801°C
Boiling point	881.4°C	-34°C	1413°C
Color	Silvery	Yellow-green	Colorless (white)
Density	0.97 g/cm ³	0.0032 g/cm ³	2.16 g/cm ³
Behavior in water	Reacts	Dissolves slightly	Dissolves freely

Sample Problem 2.1

Distinguishing Elements, Compounds, and Mixtures at the Atomic Scale

PROBLEM: The following scenes represent an atomic-scale view of three samples of matter. Describe each sample as an element, compound, or mixture.

PLAN: A sample that contains only one type of particle is either an element or a compound. The particles of an element consist of only one type of atom whereas the particles of a compound have two or more types of atom bonded together.

Sample Problem 2.1

SOLUTION:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Sample (a) contains three different types of particles and is therefore a **mixture**.

Sample (b) contains only one type of particle and each particle has only one atom. This is an **element**.

Sample (c) contains only one type of particle, each of which contains two different types of atoms. This is a **compound**.

Law of Mass Conservation

The total mass of substances present does not change during a chemical reaction.

Law of Definite (or Constant) Composition

No matter the source, a particular compound is composed of the same elements in the same parts (fractions) by mass.

Figure 2.2

Calcium carbonate

Analysis by Mass (grams/20.0 g)	Mass Fraction (parts/1.00 part)	Percent by Mass (parts/100 parts)
8.0 g calcium 2.4 g carbon 9.6 g oxygen	0.40 calcium 0.12 carbon 0.48 oxygen	40% calcium 12% carbon 48% oxygen
20.0 g	1.00 part by mass	100% by mass

Sample Problem 2.2

Calculating the Mass of an Element in a Compound

- **PROBLEM:** Analysis of 84.2 g of the uranium containing compound pitchblende shows it is composed of 71.4 g of uranium, with oxygen as the only other element. How many grams of uranium can be obtained from 102 kg of pitchblende?
- **PLAN:** The mass ratio of uranium/pitchblende is the same no matter the source. We can use the ratio to find the answer.

7

Law of Multiple Proportions

If elements A and B react to form two compounds, the different masses of B that combine with a fixed mass of A can be expressed as a ratio of small whole numbers.

Example: Carbon Oxides A & B

Carbon Oxide I : 57.1% oxygen and 42.9% carbon

Carbon Oxide II : 72.7% oxygen and 27.3% carbon

 \geq

Assume that you have 100 g of each compound.

In 100 g of each compound: g O = 57.1 g for oxide I & 72.7 g for oxide II g C = 42.9 g for oxide I & 27.3 g for oxide II

For oxide I:	<u>g O</u>	57.1	= 1.33
	g C	42.9	

For oxide II: $\frac{g O}{g C} = \frac{72.7}{27.3} = 2.66$

Carbon oxide II (carbon dioxide)

Dalton's Atomic Theory

Dalton postulated that:

- 1. All matter consists of *atoms*; tiny indivisible particles of an element that cannot be created or destroyed.
- 2. Atoms of one element *cannot* be converted into atoms of another element.
- 3. Atoms of an element are *identical* in mass and other properties and are different from the atoms of any other element.
- Compounds result from the chemical combination of a specific ratio of atoms of different elements.

Dalton's Atomic Theory

explains the mass laws

Mass conservation

Atoms cannot be created or destroyed	postulate 1
or converted into other types of atoms.	postulate 2
Since every atom has a fixed mass,	postulate 3
during a chemical reaction the same aton present but in different combinations; the there is no mass change overall.	ns are refore

Dalton's Atomic Theory

explains the mass laws

Definite composition

Atoms are combined in compounds in	postulate 4
specific ratios	
and each atom has a specific mass.	postulate 3

Each element constitutes a fixed fraction of the total mass in a compound.

Dalton's Atomic Theory

explains the mass laws

Multiple proportions

Atoms of an element have the same mass postulate 3

and atoms are indivisible.

postulate 1

When different numbers of atoms of elements combine, they must do so in ratios of small, whole numbers.

Sample Problem 2.3

Visualizing the Mass Laws

PROBLEM: The following scene represents an atomic-scale view of a chemical reaction. Which of the mass laws (mass conservation, definite composition, or multiple proportions) is (are) illustrated?

PLAN: Note the numbers, types and combination of atoms before and after the reaction.

Sample Problem 2.3

SOLUTION:

There are 7 purple and 9 green atoms both before and after the reaction. Mass is therefore conserved.

After the reaction some purple atoms remain unreacted, but some have combined with green atoms to form a compound. Each particle of this compound contains 1 purple and 2 green atoms – the composition is constant, illustrating the law of definite composition.

The ratio of the elements in the compound is a small, whole number. The ratio of their masses will also be a small, whole number. This illustrates the law of multiple proportions.

Figure 2.3

Observations that established the properties of cathode rays.

J. J Thomson, (1897) was able to measure the electron (Mass/charge) ratio = -5.686x10⁻¹² Kg/C Note: Dalton atoms are not divisible??

Conclusion
Ray consists of charged particles.
Ray consists of negative particles.
These particles are found in ALL matter.
F F

Electron charge = $-1.60218 \times 10^{-19} \text{ C}$ (coulomb)

Millikan's findings were used to calculate the mass of an electron.

Figure 2.5 Rutherford's α -scattering experiment and discovery of the atomic nucleus. (1910)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A Hypothesis: Expected result based
on "plum pudding" model
B Experiment
C Actual result

Rutherford: Atoms are empty space occupied by electrons, but in the center a tiny region he called nucleus contains all the positive particles and called them protons. In 1932 James Chadwick discovered the Neutrons.

Figure 2.6 General features of the atom.

The atom is an electrically neutral, spherical entity composed of a positively charged central nucleus surrounded by one or more negatively charged electrons.

The atomic nucleus consists of protons and neutrons.

Table 2.2 Properties of the Three Key Subatomic Properties

	Charge		Mas		
Name (Symbol)	Relative	Absolute (C) [*]	Relative (amu) [†]	Absolute (g)	Location in Atom
Proton (p ⁺)	1+	+1.60218x10 ⁻¹⁹	1.00727	1.67262x10 ⁻²⁴	Nucleus
Neutron (n ⁰)	0	0	1.00866	1.67493x10 ⁻²⁴	Nucleus
Electron (e ⁻)	1-	-1.60218x10 ⁻¹⁹	0.00054858	9.10939x10 ⁻²⁸	Outside nucleus

^{*}The coulomb (C) is the SI unit of charge.

⁺ The atomic mass unit (amu) equals 1.66054x10⁻²⁴ g.

Atomic Number, Mass Number, and Atomic Symbol

Isotopes

Isotopes are atoms of an element with the same number of *protons*, but a different number of *neutrons*.

Isotopes have the same atomic number, but a different mass number.

Sample Problem 2.4

Determining the Number of Subatomic Particles in the Isotopes of an Element

- **PROBLEM:** Silicon (Si) has three naturally occurring isotopes: ²⁸Si, ²⁹Si, and ³⁰Si. Determine the number of protons, neutrons, and electrons in each silicon isotope.
- **PLAN:** The mass number (A) is given for each isotope and is equal to the number of protons + neutrons. The atomic number *Z*, found on the periodic table, equals the number of protons. The number of neutrons = A Z, and the number of electrons equals the number of protons for a neutral atom.
- **SOLUTION:** The atomic number of silicon is 14; therefore

²⁸Si has 14p⁺, 14e⁻ and 14n⁰ (28-14)
²⁹Si has 14p⁺, 14e⁻ and 15n⁰ (29-14)
³⁰Si has 14p⁺, 14e⁻ and 16n⁰ (30-14)

The Mass Spectrometer and Its Data

Mass Spectrometer measures the mass ratio and mass to charge ratio

Atomic Symbol

C Carbon

Na (Natrium) Sodium

Note: The chemical properties of an element are determined by the number of electrons or number of protons. So having Isotopes of an element will not change its chemical properties **<u>much</u>**.

Mass of an atom

Atomic mass unit (amu) or Dalton (Da)

Today (u) only

amu =
$$\frac{1}{12}$$
 mass of ¹²C
So ¹²C has a mass of 12 u

>

Sample Pro	blem 2.5	Calculating th	he Atomic Mass of an Element	
PROBLEM: Silver (Ag, $Z = 47$) has two naturally occurring isotopes, ¹⁰⁷ Ag and ¹⁰⁹ Ag. From the mass spectrometric data provided, calculate the atomic mass of Ag.				
<u>Isotope</u>		<u>Mass (amu)</u>	<u>Abundance (%)</u>	
¹⁰⁷ Ag		106.90509	51.84	
¹⁰⁹ Ag		108.90476	48.16	
PLAN: Find the is	the weight sotopic mas	ed average of sses.	mass (g) of each isotope	
			abundance of each isotop	е
			portion of atomic mass from each isotope	
			add isotopic portions	
_			atomic mass	
-35				\geq

2-35

Sample Problem 2.5

SOLUTION:

mass portion from ¹⁰⁷Ag = 106.90509 amu x 0.5184 = 55.42 amu mass portion from ¹⁰⁹Ag =

108.90476amu x 0.4816 = 52.45amu

atomic mass of Ag = 55.42amu + 52.45amu

ELEMENTS: A FIRST LOOK AT THE PERIODIC TABLE.

1870 65 elements were known

Today more than 116 elements

Dmitri Mendeleev and Meyer discovered the periodic table separately in 1869

Dmitri Mendeleev organized elements, he listed the elements by increasing atomic mass.

Figure 2.9

The modern periodic table.

19

Figure 2.11 Factors that influence the strength of ionic bonding.

Figure 2.12 Formation of a covalent bond between two H atoms.

Covalent bonds form when elements share electrons, which usually occurs between nonmetals.

Molecules and Ions

Molecule – the basic unit of an element or covalent compound, consisting of two or more atoms bonded by the sharing of electrons.

Most covalent substances consist of molecules.

Ion – a single atom or covalently bonded group of atoms that has an overall electrical charge.

There are *no molecules* in an ionic compound.

Figure 2.13 Elements that occur as molecules.

Figure 2.14 The carbonate ion in calcium carbonate.

A polyatomic ion consists of two or more atoms covalently bonded together and has an overall charge.

In many reactions the polyatomic ion will remain together as a unit.

Chemical Formulas

- · A chemical formula consists of
 - element symbols with
 - numerical subscripts.
- · The chemical formula indicates the
 - type and number of each atom present
 - in the **smallest unit** of a substance.

Naming Binary Ionic Compounds

For **all** ionic compounds, the name and formula lists the **cation** first and the **anion** second.

In a **binary ionic** compound, both the cation and the anion are monatomic.

The name of the cation is the **same** as the name of the metal. Many metal names end in -ium.

The anion is named by adding the suffix *-ide* to the root of the nonmetal name.

Calcium and bromine form calcium bromide.

Table 2.3 Common Monatomic lons*					
Charge	Cations Formula	Name	Charge	Anions Formula	Name
+1	H ⁺ Li ⁺ Na ⁺ K ⁺ Cs ⁺ Ag ⁺	hydrogen lithium sodium potassium cesium silver	-1	H⁻ F⁻ CI⁻ Br⁻ I⁻	hydride fluoride chloride bromide iodide
+2	Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ Zn ²⁺ Cd ²⁺	magnesium calcium strontium barium zinc cadmium	-2	O ²⁻ S ²⁻	oxide sulfide
+3	Al ³⁺	aluminum	-3	N ³⁻	nitride

*Listed by charge; those in boldface are most common.

Figure 2.15 Some common monatomic ions of the elements.

Sample Problem 2.7

Naming Binary Ionic Compounds

- **PROBLEM:** Name the ionic compound formed from each of the following pairs of elements:
 - (a) magnesium and nitrogen (b) iodine and cadmium
 - (c) strontium and fluorine (d) sulfur and cesium
- **PLAN:** Use the periodic table to decide which element is the metal and which the nonmetal. The metal (cation) is named first and the suffix-*ide* is added to the root of the non-metal name.

SOLUTION:

(a) magnesium nitride (b) cadmium iodide

(c) strontium fluoride (d) cesium sulfide

Determining Formulas of Binary Ionic Compounds

- **PROBLEM:** Write empirical formulas for each of the compounds named in Sample Problem 2.7.
 - (a) magnesium nitride (b) cadmium iodide
 - (c) strontium fluoride (d) cesium sulfide
- **PLAN:** A compound is neutral. We find the smallest number of each ion that will produce a neutral formula. These numbers appear as *right subscripts* to the relevant element symbol.

SOLUTION:

- (a) Mg²⁺ and N³⁻; three Mg²⁺(6+) and two N³⁻(6⁻); Mg_3N_2
- (b) Cd^{2+} and I⁻; one $Cd^{2+}(2+)$ and two I⁻(2⁻); Cdl₂
- (c) Sr^{2+} and F^- ; one $Sr^{2+}(2+)$ and two $F^-(2^-)$; SrF_2
- (d) Cs⁺ and S²⁻; two Cs⁺(2+) and one S²⁻(2⁻); Cs_2S

2-51

Element	Ion Formula	Systematic Name	Common Name
Chromium	Cr ²⁺	chromium(II)	chromous
	Cr ³⁺	chromium(III)	chromic
Cobalt	Co ²⁺	cobalt(II)	
	Co ³⁺	cobalt(III)	
Copper	Cu⁺	copper(l)	cuprous
	Cu ²⁺	copper(II)	cupric

ferrous

mercurous

mercuric

stannous

stannic

ferric

iron(II)

iron(III)

lead(II)

lead(IV)

tin(II)

tin(IV)

mercury (I)

mercury (II)

Table 2.4 Some Metals That Form More Than One Monatomic Ion*

^{*}Listed alphabetically by metal name; the ions in boldface are most common.

Iron

Lead

Tin

Mercury

Fe²⁺

Fe³⁺

Pb²⁺

Pb4+

 Hg_{2}^{2+}

Hg²⁺

Sn²⁺

Sn4+

Sample	Problem	2.9
--------	---------	-----

Determining Names and Formulas of Ionic Compounds of Elements That Form More Than One Ion

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:

(a) tin(II) fluoride (b) Crl₃ (c) ferric oxide (d) CoS

PLAN: Find the smallest number of each ion that will produce a neutral formula.

SOLUTION:

- (a) Tin(II) is Sn²⁺; fluoride is F⁻; so the formula is SnF₂.
- (b) The anion I⁻ is iodide; 3I⁻ means that Cr (chromium) is +3. Crl₃ is chromium(III) iodide.
- (c) Ferric is a common name for Fe³⁺; oxide is O²⁻; therefore the formula is Fe₂O₃.
- (d) Co is cobalt; the anion S²⁻ is sulfide; the compound is cobalt(II) sulfide.

Table 2.5 Common Polyatomic Ions*			
Formula	Name	Formula	Name
Cations			
NH ₄ +	ammonium	H₃O⁺	hydronium
Common Anions			
CH₃COO⁻	acetate	CO ₃ ²⁻	carbonate
CN ⁻	cyanide	HCO ₃ -	bicarbonate
OH⁻	hydroxide	CrO ₄ ²⁻	chromate
CIO-	hypochlorite	Cr ₂ O ₇ ²⁻	dichromate
CIO ₂ ⁻	chlorite	02 ²⁻	peroxide
CIO ₃ -	chlorate	PO ₄ ³⁻	phosphate
NO_2^{-}	nitrite	HPO42-	hydrogen phosphate
NO₃⁻	nitrate	SO32-	sulfite
MnO₄ ⁻	permanganate	SO4 ²⁻	sulfate
Bold face ions are most common. (partial table)			

Figure 2.16

Naming oxoanions

	Prefix	Root	Suffix	Exa	mple
toms	per	root	ate	CIO ₄ ⁻	perchlorate
f O al		root	ate	CIO3_	chlorate
No. o		root	ite	CIO2 ⁻	chlorite
2	hypo	root	ite	CIO⁻	hypochlorite

Table 2.6	Numerical Compound	Prefixes* for I ds	Hydrates ar	nd Binary Cova	alent
Number	Prefix	Number	Prefix	Number	Prefix
1	mono-	4	tetra-	8	octa-
2	di-	5	penta-	9	nona-
3	tri-	6	hexa-	10	deca-
		7	hepta-		

 \geq

 \geq

Sample Problem 2.10

Determining Names and Formulas of Ionic Compounds Containing Polyatomic Ions

PROBLEM: Give the systematic name for each formula or the formula for each name for the following compounds:

(a) $Fe(ClO_4)_2$ (b) sodium sulfite (c) $Ba(OH)_2 \cdot 8H_2O$

- **PLAN:** Remember to use parentheses when more than one unit of a particular polyatomic ion is present in the compound.
- **SOLUTION:** (a) ClO_4^- is perchlorate; Fe must have a 2+ charge since there are $2 ClO_4^-$ ions. This is **iron(II) perchlorate**.

(b) The anion sulfite is SO_3^{2-} ; therefore you need 2 Na⁺ for each sulfite. The formula is **Na**₂**SO**₃.

(c) The ionic compound is barium hydroxide. When water is included in the formula, we use the term "hydrate" and a prefix that indicates the number of molecules of H_2O . This compound is **barium hydroxide octahydrate**.

Sample Problem 2.11

Recognizing Incorrect Names and Formulas of Ionic Compounds

- **PROBLEM:** There is an error in the second part of each statement. Provide the correct name or formula in each case.
 - (a) $Ba(C_2H_3O_2)_2$ is called barium diacetate.
 - (b) Sodium sulfide has the formula $(Na)_2SO_3$.
 - (c) Iron(II) sulfate has the formula $Fe_2(SO_4)_3$.
 - (d) Cesium carbonate has the formula $Cs_2(CO_3)$.

SOLUTION:

- (a) The charge of Ba^{2+} must be balanced by two $C_2H_3O_2^-$ ions. The prefix "di" is not required and is not used in this way when naming ionic compounds. The correct name is simply **barium acetate**.
- (b) An ion of a single element does not need parentheses, and sulfide is S²⁻, not SO₃²⁻. The correct formula is Na₂S.

Sample Problem 2.11

- (c) Sulfate or SO₄²⁻ has a 2⁻ charge, and only one Fe²⁺ is needed to form a neutral compound. The formula should be FeSO₄.
- (d) The parentheses are unnecessary, since only one CO₃²⁻ ion is present. The correct formula is Cs₂CO₃.

Naming Acids

 Binary acid solutions form when certain gaseous compounds dissolve in water. For example, when gaseous hydrogen chloride (HCI) dissolves in water, it forms a solution called hydrochloric acid. Prefix hydro- + anion nonmetal root + suffix -ic + the word acid hydro + chlor + ic + acid hydrochloric acid

2) Oxoacid names are similar to those of the oxoanions, except for two suffix changes: *-ate* in the anion becomes *-ic* in the acid *-ite* in the anion becomes *-ous* in the acid *The* oxoanion prefixes *hypo-* and *per-* are retained. Thus, BrO₄⁻ is *perbromate*, and HBrO₄ is *perbromic* acid; IO₂⁻ is *iodite*, and HIO₂ is *iodous acid*.

30

Sample Problem 2.12	Determining Names and Formulas of		
	Aniona and Aaida		
	Anions and Acius		

- **PROBLEM:** Name the following anions and give the name and formula of the acid derived from each:
 - (a) Br⁻ (b) IO_3^- (c) CN⁻ (d) SO₄²⁻ (e) NO₂⁻

SOLUTION:

- (a) The anion is bromide; the acid is hydrobromic acid, HBr.
- (b) The anion is iodate; the acid is iodic acid, HIO₃.
- (c) The anion is cyanide; the acid is hydrocyanic acid, HCN.
- (d) The anion is sulfate; the acid is sulfuric acid, H₂SO₄.
- (e) The anion is nitrite; the acid is nitrous acid, HNO₂.

2-61

Naming Binary Covalent Compounds

A binary covalent compound is typically formed by the combination of two non-metals.

Some of these compounds are very common and have trivial names, eg., $\rm H_2O$ is water.

For a binary covalent compound, the element with the *lower* group number in the periodic table is *first* in the name and formula. Its name remains unchanged.

The element that is second is named using the root with the suffix –*ide*. Numerical prefixes indicate the number of atoms of each element present.

Sample Problem 2.13

Determining Names and Formulas of Binary Covalent Compounds

- PROBLEM: (a) What is the formula of carbon disulfide?
 - (b) What is the name of PCI₅?
 - (c) Give the name and formula of the compound whose molecules each consist of two N atoms and four O atoms.

SOLUTION:

- (a) Carbon is C, sulfide is sulfur S and di-means two; the formula is CS₂.
- (b) P is phosphorous, Cl is chloride, the prefix for 5 is penta-. This is **phosphorous pentachloride**.
- (c) N is nitrogen and is in a lower group number than O (oxygen). The compound formula is N₂O₄ and the name is dinitrogen tetraoxide.

Sample Problem 2.14

Recognizing Incorrect Names and Formulas of Binary Covalent Compounds

- **PROBLEM:** Explain what is wrong with the name of formula in the second part of each statement and correct it:
 - (a) SF₄ is monosulfur pentafluoride.
 - (b) Dichlorine heptaoxide is Cl_2O_6 .
 - (c) N_2O_3 is dinitrotrioxide.

SOLUTION:

- (a) The prefix mono- is not needed if there is only one atom of the first element, and the prefix for four is tetra-. So the name is **sulfur tetrafluoride**.
- (b) Hepta- means 7; the formula should be Cl₂O₇.
- (c) The first element is given its elemental name so this is dinitrogen trioxide.

 \geq

Naming Straight-Chain Alkanes

Hydrocarbons are compounds that contain only carbon and hydrogen atoms.

Alkanes are the simplest type of hydrocarbon.

Alkanes are named using a root name followed by the suffix *–ane*.

Table 2.7 The F	First 10 Straight-	Chain Alkanes
	Name (Formula)	Model
	Methane (CH ₄)	
	Ethane (C_2H_6)	Ay
	Propane (C ₃ H ₈)	
	Butane (C_4H_{10})	
	Pentane (C_5H_{12})	
	Hexane (C_6H_{14})	
	Heptane (C_7H_{16})	
	Octane (C ₈ H ₁₈)	
	Nonane (C_9H_{20})	
	Decane $(C_{10}H_{22})$	****

Molecular Masses from Chemical Formulas

Molecular mass = sum of atomic masses

For the H₂O molecule:

molecular mass =

(2 x atomic mass of H) + (1 x atomic mass of O)

= (2 x 1.008 amu) + (1 x 16.00 amu)

= 18.02 amu

By convention, we read masses off the periodic table to **4 significant figures**.

For **ionic compounds** we refer to a **formula mass** since ionic compounds do not consist of molecules.

Sample Problem 2.15

Calculating the Molecular Mass of a Compound

PROBLEM: Using the periodic table, calculate the molecular (or formula) mass of:

(a) tetraphosphorous trisulfide (b) ammonium nitrate

PLAN: Write the formula and then multiply the number of atoms by the respective atomic masses. Add the masses for each compound.

SOLUTION:

(a) P_4S_3 molecular mass = (4 x atomic mass of P) + (3 x atomic mass of S) = (4 x 30.97 amu) + (3 x 32.07 amu) = 220.09 amu (b) NH₄NO₃ formula mass = (2 x atomic mass of N) + (4 x atomic mass of H) + (3 x atomic mass of O) = (2 x 14.01 amu) + (4 x 1.008 amu) + (3 x 16.00 amu) = 80.05 amu

Using Molecular Depictions to determine Formula, Name, and Mass for a compound

PROBLEM: Each scene represents a binary compound. Determine its formula, name, and molecular (formula) mass.

PLAN: Each compound contains only two elements. Find the simplest whole number ratio of atoms in each compound and use this formula to determine the name and the formula mass.

2-69Sample Problem 2.16 SOLUTION: (a) (b) sodium fluorine nitrogen (a) There is 1 brown Na⁺ for every green F⁻, so the formula is NaF, an ionic compound, which is named sodium fluoride. Formula mass = $(1 \times \text{atomic mass of Na}) + (1 \times \text{atomic mass of F})$ = 22.99 amu + 19.00 amu = **41.99 amu** (b) There are 3 green F for every blue N, so the formula is NF_3 , a covalent compound, which is named nitrogen trifluoride. Molecular mass = (1 x atomic mass of N) + (3 x atomic mass of F) = 14.01 amu + (3 x 19.00) = **71.01 amu** 2 - 70

Representing Molecules with Formulas and Models

Representing Molecules with Formulas and Models

